Чем отличается напор от давления

В чем разница между напором и давлением

Чем отличается напор от давления

Трудно представить себе цивилизованную жизнь без наличия систем отопления и водоснабжения. Это могут быть как центральные, так и автономные системы, предназначенные для обеспечения конкретного сооружения или комплекса.

И в первом и во втором случае принципы их устройства практически ничем не отличаются, поскольку подчинены одним и тем же законам физики.

Для полноценного представления характера функционирования конкретной системы, необходимого для устранения возможных проблем либо определения ключевых параметров при проектировании следует различать понятия напора и давления.

Понятие давления

С точки зрения физики под давлением понимается величина, характеризующая воздействие силы, приложенной перпендикулярно поверхности, на единицу площади данной поверхности.

В международной системе единиц данная величина измеряется в паскалях, но на практике для ее характеристики чаще используют такую величину как атмосфера.

Данная единица характеризует воздействие 1 килограмма на 1 квадратный сантиметр поверхности, которое равно 101325 паскалей.

Применимо к водоснабжению давление является ключевым параметром, характеризующим эффективность водопровода. Практически все устройства, подключенные к системе, не будут нормально работать без обеспечения стабильности указанного показателя. При этом, негативно на устройствах отражается как недостаточное, так и избыточное его значение.

Нормальным и достаточным считается давление в трубопроводе в диапазоне от 2,5 до 3,5 атмосферы, но идеальное значение должно составлять 4 атмосферы. Более того, это значение является минимальным необходимым для некоторых устройств, например, джакузи.

Понятие напора

Помимо давления в области гидравлики и гидродинамики используется понятие напор, которое также определяется как давление жидкости, но выражается линейным значением высоты столба жидкости над определенным расчетным уровнем. Единицей измерения указанной величины в международной системе единиц является метр. В физике различают 4 вида напора: статический (свободный), геометрический, динамический (скоростной) и потерянный.

При выполнении расчетов, необходимых при проектировании водопровода, учитывается именно свободный напор, который показывает наименьшую высоту точки забора воды над уровнем земли.

На эту высоту необходимо обеспечить подъем воды, преодолевая сопротивление самого трубопровода. В строительстве норматив свободного напора является 10 метров для первого этажа здания.

В случае многоэтажных конструкций для каждого этажа, начиная со второго, к показателю 1 этажа прибавляется 4 метра.

При этом проект водопровода обязательно должен учитывать необходимость обеспечения 2 крайних режимов функционирования:

  1. Обеспечение требуемого значения в условиях максимального потребления воды.
  2. Обеспечение ограниченного напора в условиях полного отсутствия потребления.

Достижение указанных условий напрямую влияет на выбор насосного оборудования, материала и диаметра трубопровода.

Сходство понятий напора и давления

Исходя из определений напора и давления, данные величины являются взаимосвязанными. В частности, последнее является результатом произведения напора (высоты столба жидкости), плотности конкретной жидкости и величины ускорения свободного падения.

Наглядно сходство указанных параметров демонстрирует устаревшая на сегодняшний день система водоснабжения, при которой давление в трубопроводах достигалось путем установки водонапорных башен. В верхней части башен размещались емкости, которые наполнялись водой в период низкого потребления и помогали насосу обеспечить необходимые параметры в периоды пикового расхода.

Принципиально аналогичным образом автономные системы функционируют и в настоящее время. Главное произвести правильный расчет производительности насоса, чтобы с одной стороны не переплачивать лишние деньги за избыточную мощность, а с другой – обеспечить нормативные параметры рассматриваемых показателей в трубопроводе.

На бытовом уровне рассматриваемые показатели часто отождествляют, понимая под напором наглядное представление о давлении в виде линейного значения высоты. И это не лишено логики, поскольку даже в самом определении напора содержится фраза «…напор – это давление жидкости…». Вместе с тем, узкие специалисты, в частности производители насосного оборудования, различают указанные понятия.

Так, давление – это показатель, который должен быть обеспечен в трубопроводе для нормального функционирования системы водоснабжения. Но в расчетах требуемых параметров насосного оборудования оперировать смысловым значением указанного параметра достаточно проблематично. Поэтому, используется параметр напора.

При подборе параметров насоса учитывается статический напор, его падение на трубопроводе, а также количество потребителей воды из системы.

Статический напор в данном случае рассчитывается как высота, на которую необходимо поднять воду из скважины в вертикальном направлении и, при необходимости, протолкнуть в горизонтальной плоскости к потребителям.

1 метр вертикального подъема приравнивается к 10 метрам горизонтального перемещения. Полученную величину необходимо откорректировать на величину потерь из-за трения о внутреннюю поверхность труб и изгибов труб.

Эти показатели определяются по специальным таблицам в зависимости от материала и диаметра трубы.

По полученным в результате расчетов данным подбираются параметры насоса с учетом запаса производительности в размере 20-30%.

Выполнить такой расчет, основываясь исключительно на показателе давления, практически невозможно.

А после того, как произведены вычисления напора насоса, который будет способен создать необходимое давление на выходе, осуществляется выбор материала и диаметра труб, предназначенных для монтажа всей системы водоснабжения.

Источник: https://vchemraznica.ru/v-chem-raznica-mezhdu-naporom-i-davleniem/

Подача и Напор Насоса

Чем отличается напор от давления

Подача — Q [м³/ч] — объём воды, подаваемый насосом в единицу времени. Подача насоса определяется рабочей точкой на его характеристике и кроме конструктивных особенностей зависит от частоты вращения рабочего колеса и гидравлической характеристики сети.

Оптимальная подача насоса достигается при максимальном значении коэффициента полезного действия. Фактическую подачу насоса можно определить по напорно-расходной характеристике зная создаваемый напор.

Напор — H [м.вод.ст] — разница давлений между входным и выходным патрубком насоса. Напор насоса слагается из высот, которые необходимо преодолеть жидкости.

H = Hz + (Pв – Pн)/(ρg) + dh + (С²в – С²н)/(2g)

где

  • Hz – геометрическая высота подъёма, м равная разнице уровней поверхности жидкости в приёмном (верхнем) и подающем (нижнем) резервуарах.
  • (Pв – Pн)/(ρg) – высота, м, соответствующая разности давлений, Па в верхнем и нижнем резервуарах;
  • dh – сумма гидравлических потерь (на трение и в местных сопротивлениях) во всасывающем и напорном трубопроводах, м;
  • (С²в – С²н)/(2g) – высота, м, соответствующая разности кинетической энергии жидкости при скорости движения Св м/с на выходе из напорного трубопровода в верхний резервуар и при скорости Сн, м/c, на входе во всасывающий трубопровод из нижнего резервуара;
  • ρ – плотность жидкости
  • g – ускорение свободного падения, равное 9,8 м/с²

Если давление приложенное к поверхности жидкости в обоих резервуарах будет одинаковым, например, при открытых резервуарах, и жидкость в обоих резервуарах находится в состоянии покоя, тогда выражение определяющее напор насоса можно упростить:

H = Hz + dh

Из выше приведенных выражений видно, что напор насоса поднимающего воду определяется, высотой подъёма и потерями напора в трубопроводах. В замкнутом циркуляционном кольце, (например системы отопления), напор насоса определяется суммой потерь напора на всех элементах кольца и не зависит от высоты системы и места установки насоса в ней.

Напорно-расходная характеристика — графическое отображение зависимости напора насоса от его подачи в координатах Q [м³/ч] / H [м.вод.ст]. Напорно-расходная характеристика, является основной характеристикой используемой для выбора насосов и приводится в каталогах производителей в виде графиков.

Рабочая точка насоса — точка на пересечении напорно-расходной характеристики с горизонтальной линией, проведённой с точки на оси ординат, которая соответствует развиваемому напору. Чтобы определить фактическую подачу насоса из рабочей точки опускают перпендикуляр на ось подачи (абсцисс).

Таким образом, подачу насоса определяет развиваемый им напор, который в повысительных насосах определяется высотой подъёма и потерями в трубопроводах, а в циркуляционных насосах — гидравлической характеристикой циркуляционного кольца. Так как, в циркуляционном кольце изменение потерь напора пропорционально квадрату изменения расхода проходящего через него, гидравлическая характеристика сети в координатах Q [м³/ч] / H [м.вод.ст], имеет вид параболы.

Высота всасывания — Нвс [м] — при условии забора воды из нижнего резервуара, в котором на зеркало воды действует атмосферное давление, высота всасывания насоса соответствует разнице уровней в метрах, между осью рабочего колеса и уровнем жидкости в нижнем резервуаре, за вычетом потерь напора в трубопроводе, который соединяет нижний резервуар и насос.

Подъём воды с нижнего резервуара происходит за счёт разницы давлений, при этом в рабочем колесе насоса создаётся разрежение, а на воду действует атмосферное давление. Так как атмосферному давлению соответствует столб воды высотою в 10,3 метра, а насос не может создать в рабочем колесе абсолютный вакуум — высота всасывания насоса не может превышать 8 метров.

Кавитационный запас — NPSH [м.вод.ст] — минимальное давление во всасывающем патрубке насоса обеспечивающее безкавитационную работу. Значение кавитационного запаса определяется опытным путём производителями насосов и приводится в виде графика в зависимости от подачи насоса.

Полезная мощность насоса — Nu [Вт] — соответствует энергии передаваемой жидкости в единицу времени.

Nu = ρ · g · Q · H

Мощность на валу насоса — Nw [Вт] — механическая мощность, которая передаётся на вал насоса. Механическая мощность больше полезной, на величину гидравлических потерь и потерь на трение в рабочем колесе.

Nw = Nu / η

КПД насоса — η [%] — коэффициент полезного действия характеризующий степень совершенства центробежного насоса и определяется как отношение полезной мощности к мощности на валу.

Номинальный диаметр — DN — численное обозначение внутреннего диаметра присоединительных патрубков насоса общее для всех трубопроводных элементов. Номинальный диаметр насоса не имеет размерности, но его значение приблизительно равно внутреннему диаметру присоединяемого трубопровода.

Ряд условных проходов DN (Ду) трубопроводных элементов регламентирован ГОСТ 28338-89 «Проходы условные (размеры номинальные)». Альтернативным обозначением номинального диаметра DN, распространённым в странах постсоветского пространства, был условный диаметр.

Номинальное давление — PN [бар] — наибольшее избыточное давление воды с температурой в 20°C, при котором допускается длительная работа насоса.

Альтернативным обозначением номинального давления, распространённым в странах постсоветского пространства, было условное давление. Ряд номинальных давлений PN (Ру) трубопроводных элементов регламентирован ГОСТ 26349-84 «Давления номинальные (условные)».

Тепловой пункт
для отопления

Пластинчатые
теплообменники

Источник: http://www.ktto.com.ua/kharakteristiki/nil

Какая связь между напором и давлением? Какие размерности имеют эти параметры? Как они взаимно пересчитываются?

Чем отличается напор от давления

При гидравлическом расчете тепловых сетей, как правило, не учитывают отношение w2/2g, представляющее собой скорост­ной напор потока в трубопроводе, так как он составляет сравнительно небольшую до­лю полного напора и изменяется по длине сети незначительно. Обычно принимают

H0 = Z + p/y=Z+H, (1.3)

т.е. считают полный напор равным сумме пьезометрического напора и высоты распо­ложения оси трубопровода над плоскостью отсчета. Под пьезометрическим напором понимается давление в трубопроводе, вы­раженное в линейных единицах (обычно в метрах) столба той жидкости, которая пе­редается по трубопроводу.

Из (1.3) следует, что Н = Н0 – Z. Пьезо­метрический напор равен разности между полным напором и геометрической высо­той оси трубопровода над плоскостью от­счета. Падение давления и потеря напора в сети, или располагаемый перепад (раз­ность напоров), в сети связаны следующи­ми зависимостями:

(1.5)

Где δН — потеря напора или располагаемый напор, м; δр — падение давления, или рас­полагаемый перепад давления, Па; h, R — удельная потеря напора (безразмерная ве­личина) и удельное падение давления, Па/м.

12. Напишите формулу Дарси для расчета удельного линейного падения давления в трубопроводе. Назовите значения и размер­ности членов этого уравнения.

Исходной зависимостью для определе­ния удельного линейного падения в трубо­проводе является уравнение Дарси

(1.8)

где λ— коэффициент гидравлического тре­ния (безразмерная величина); w — скорость

среды, м/с; р — плотность среды, кг/м ; d—внутренний диаметр трубопровода, м; G — массовый расход, кг/с.

13. Что такое эквивалентная относительная ше­роховатость стенки трубопровода?

Под эквивалентной относительной шероховатостью реального трубопровода по-нимается искусственная относительная равномерная шероховатость цилиндрической стенки, коэффициент гидравлического трения которой в области Re > Re такой же, как и в данном реальном трубопроводе

14. Как определяется местное падение давления в трубопроводе? Почему эквивалентная дли­на местного сопротивления зависит от диа­метра трубопровода? Из каких уравнений это следует?

При нали­чии на участке трубопровода ряда местных сопротивлений суммарное падение давле­ния во всех местных сопротивлениях, Па, определяется по формуле

(1.18)

где — сумма коэффициентов местных сопротивлений, установленных на участке; ξ — безразмерная величина, зависящая от характера сопротивления.

Если представить прямолинейный тру­бопровод диаметром d, линейное падение давления на котором равно падению давле­ния в местных сопротивлениях, то длина та­кого участка трубопровода, называемая эк­вивалентной длиной местных сопротивле­ний, может быть найдена из равенства

(1.19)

откуда эквивалентная длина местных со­противлений, м,

= (1.20а)

При подстановке в(1.20) коэффициента гидравлического трения по Шифринсону формула для эквивалентной длины мест­ных сопротивлений приводится к виду

= (1.20б)

Как видно из (1.206), эквивалентная дли­на местных сопротивлений пропорциональ­на сумме коэффициентов местных сопро­тивлений в первой степени и диаметру тру­бопровода в степени 1,25.

15. Изложите основные требования к режиму давлений водяных тепловых сетей из усло­вия надежности работы системы теплоснаб­жения.

Основные требования к режиму давле­ний водяных тепловых сетей из условия на­дежности работы системы теплоснабжения сводятся к следующему:

1) непревышение допустимых давлений в оборудовании источника, тепловой сети и абонентских установок. Допустимое из­быточное (сверх атмосферного) давление в стальных трубопроводах и арматуре теп­ловых сетей зависит от применяемого сор­тамента труб и в большинстве случаев со­ставляет 1,6—2,5 МПа;

2) обеспечение избыточного (сверх ат­мосферного) давления во всех элементах системы теплоснабжения для предупреж­дения кавитации насосов (сетевых, подпи-точных, смесительных) и защиты системы теплоснабжения от подсоса воздуха. Невы­полнение этого требования приводит к кор­розии оборудования и нарушению цирку­ляции воды. В качестве минимального зна­чения избыточного давления принимают 0,05 МПа (5 м вод. ст.)

3) обеспечение невскипания сетевой во­ды при гидродинамическом режиме систе­мы теплоснабжения, т.е. при циркуляции воды в системе.

16. Какое преимущество имеет установление общей статической зоны для всей системы теплоснабжения? Всегда ли возможно такое решение? Чем ограничивается такая возмож­ность?

17. На основе каких условий на пьезометриче­ский график наносятся уровни допустимых максимальных и минимальных пьезометри­ческих напоров для подающей и обратной линий системы теплоснабжения?

На пьезометрических графиках наносят­ся линии напоров для основной расчетной магистрали и характерных ответвлений как для гидродинамического режима, так и для статического состояния системы тепло­снабжения.

Если гидродинамический ре­жим системы теплоснабжения сильно изме­няется в течение отопительного сезона или года, то на пьезометрический график нано­сятся линии напоров для наиболее харак­терных режимов системы.

Например, при открытой системе теплоснабжения на пье­зометрических графиках обычно приводят­ся линии напоров для трех характерных ре­жимов работы системы, а именно: при от­сутствии водозабора, при максимальном отборе воды из подающей линии тепловой сети, при максимальном отборе из обратной линии тепловой сети. Поскольку допустимые напоры являют­ся пьезометрическими, т.

е. отсчитываются от оси трубопроводов, линии допустимых напоров для тепловой сети следуют за рель­ефом местности, так как при построении графика напоров обычно условно принима­ют, что оси трубопроводов тепловых сетей совпадают с поверхностью земли.

При по­строении линии допустимых напоров для оборудования, имеющего существенные вертикальные габариты, максимальный пьезометрический напор отсчитывают от нижней точки, а минимальный — от верхней точки этого оборудования.

В част­ности, для пиковых водогрейных котлов максимально допустимый пьезометриче­ский напор отсчитывают от нижней точки котла, которую условно принимают совпа­дающей с поверхностью земли, а мини­мально допустимый напор — от верхнего коллектора котла, отметка которого по от­ношению к нижней точке котла обычно вы­ше на 10—15 м. В связи с возможным ло­кальным нагревом воды в отдельных труб­ках котла выше расчетной температуры в выходном коллекторе минимально допус­тимый пьезометрический напор определя­ют по температуре кипения воды, превы­шающей на 30 °С расчетную в выходном коллекторе котла.

Максимально допустимый гидравличе­ский пьезометрический напор обычно оп­ределяют: для подающей линии системы — из условия механической прочности обору­дования тепловой сети (трубы, арматура) и источника теплоты (пароводяные подог­реватели, водогрейные котлы); для обрат­ной линии при зависимой схеме присоеди­нения абонентов — из условия механиче­ской прочности теплоиспользующего обо­рудования абонентских установок (ото­пительные и вентиляционные приборы); при независимой схеме соединения абонен­тов — из условия механической прочности водо-водяных подогревателей.

Минимально допустимый гидродинами­ческий пьезометрический напор обычно оп­ределяют: для подающей линии — из усло­вия защиты от вскипания воды; для обрат­ной линии — из условия предупреждения вакуума (давления меньше 0,1 МПа) в сис­теме, а также предупреждения кавитации на всасывающей стороне насосов.

18. Из каких условий выбираются схемы при­соединения установок к водяным тепловым сетям?

Основные требования к режиму давле­ний водяных тепловых сетей из условия на­дежности работы системы теплоснабжения сводятся к следующему:

1) непревышение допустимых давлений в оборудовании источника, тепловой сети и абонентских установок. Допустимое из­быточное (сверх атмосферного) давление в стальных трубопроводах и арматуре теп­ловых сетей зависит от применяемого сор­тамента труб и в большинстве случаев со­ставляет 1,6—2,5 МПа;

2) обеспечение избыточного (сверх ат­мосферного) давления во всех элементах системы теплоснабжения для предупреж­дения кавитации насосов (сетевых, подпи-точных, смесительных) и защиты системы теплоснабжения от подсоса воздуха. Невы­полнение этого требования приводит к кор­розии оборудования и нарушению цирку­ляции воды. В качестве минимального зна­чения избыточного давления принимают 0,05 МПа (5 м вод. ст.)

3) обеспечение невскипания сетевой во­ды при гидродинамическом режиме систе­мы теплоснабжения, т.е. при циркуляции воды в системе.

19. Приведите исходные данные для гидравли­ческого расчета разветвленной водяной теп­ловой сети. Какова последовательность от­дельных расчетных операций?

20. Приведите исходные данные для гидравли­ческого расчета разветвленной паровой се­ти. В чем состоит методика расчета?

21. По какому расходу воды выбираются диа­метры тепловой сети в открытых системах теплоснабжения?

В открытых системах теплоснабжения расчетные расходы воды получаются в ряде случаев различными для подающего и об­ратного трубопроводов (абонентские вводы с несвязанным регулированием при наличии регуляторов расхода перед отопительной системой).

Однако подающие и обратные трубопроводы сети обычно прокладывают­ся одного диаметра, хотя имеют место случаи, когда целесообразно укладывать трубы разного диаметра согласно гидра­влическим расчетам.

Расчетный расход во­ды в этом случае должен выбираться из ус­ловия, чтобы суммарная потеря напора при расходе воды в подающем (G0 + GB + Gr) и обратном (G0 + GB) трубопроводах была равна суммарной потере при одинаковом расходе воды G в подающем и обратном трубопроводах.

Этот расчетный расход воды, по которо­му и следует выбирать диаметры тепловой сети при использовании открытой системы, определяют по формуле

(1.28а)

где G0B — суммарный расчетный расход сетевой воды на отопление и вентиляцию:

GО.B = G0 + GB; Gr — расчетный расход сетевой воды из подающего трубопровода на горячее водоснабжение. По СНиП «Те­пловые сети» [1]

G = GOB + 0,6Gr. (1.28б)

22. Как определяется рабочий напор сетевых на­сосов водяной тепловой сети? Из каких сла­гаемых он состоит?

Рабочий напор сетевых на­сосов замкнутой водяной сети вычисляется по формуле

Н = δНт + δНП + δН0 + ΔНк, (1.29)

где δНт — потеря напора в подогреватель­ной установке (бойлерной) станции, пико­вой котельной и станционных коммуника­циях (обычно 20—25 м); δНп, δН0 — потери напора в подающей и обратной линиях теп­ловой сети (определяются гидравлическим расчетом сети); ΔНк — требующийся распо­лагаемый напор в конечной точке сети на абонентском вводе (МТП) или групповой подстанции (ГТП) с учетом потери напора в авторегуляторах.Значение ΔНк зависит от местной тепло-потребляющей установки и схемы ее при­соединения к тепловой сети. При размеще­нии узлов присоединения на абонентских вводах (МТП) можно принимать следую­щие значения ΔНк: при зависимом присоединении отопи­тельных и вентиляционных установок без применения элеваторов, а также при неза­висимом присоединении с помощью по­верхностных подогревателей 6—10 м; при присоединении отопительных уста­новок с помощью элеватора 15—20 м; при последовательном включении водо-водяных подогревателей горячего водо­снабжения и элеваторного узла 20—25 м. При групповом присоединении абонент­ских установок к тепловой сети через ГТП значения δНп и δН0 в (1.29) представляют собой потери напора в подающей и обратной линиях тепловой сети между источником те­плоты (ТЭЦ, котельной) и ГТП.

23. Как определяется рабочий напор подпиточных насосов в открытых системах тепло­снабжения?

В открытой системе теплоснабжения на­пор подпиточных насосов, устанавливае­мых на станции для восполнения водозабо­ра и утечек воды из тепловой сети, опреде­ляют исходя из летнего режима работы сис­темы по формуле

Н=НСТ + δН Л – Z (1.30)

где Нст — статический напор в тепловой се­ти (обычно 60 м); δНл — суммарная потеря напора в подпиточной линии и в тепловой сети при летнем режиме работы системы; Z— геодезическая отметка уровня воды в баке, из которого ведется подпитка системы.

24. По какому расходу сетевой воды устанавли­вается проектная подача сетевых насосов? Какое допускается минимальное количество сетевых насосов на станции?

Проектная подача рабочих сетевых на­сосов, устанавливаемых на станции, долж­на соответствовать максимальному расходу воды в сети. Количество устанавливаемых сетевых насосов должно быть не менее двух, из которых один резервный. При чис­ле параллельно работающих сетевых насо­сов больше пяти установку резервного на­соса можно не предусматривать.

25. В чем состоит метод определения давления в конце длинного транзитного паропровода?

Источник: https://megaobuchalka.ru/3/38460.html

Ваше Давление
Добавить комментарий